2022 Water Quality Report for City of Potterville Water Supply Serial Number: 5550 This report covers the drinking water quality for City of Potterville for the 2022 calendar year. This information is a snapshot of the quality of the water that we provided to you in 2022. Included are details about where your water comes from, what it contains, and how it compares to United States Environmental Protection Agency (U.S. EPA) and state standards. Your water comes from two groundwater wells, each over 200 feet. The State performed an assessment of our source water to determine the susceptibility or the relative potential of contamination. The susceptibility rating is on a seven-tiered scale from "very-low" to "very-high" based on geologic sensitivity, well construction, water chemistry and contamination sources. The susceptibility of our source is moderate risk for Well #1 and moderate-to-low risk for Well #2. There are no significant sources of contamination include in our water supply. We are making efforts to protect our sources by participating in the wellhead protection program and performing a rate study for the city's water supply. If you would like to know more about this report, please contact: Donald Stanley, City of Potterville Director of Dept. of Public Works, (517)667-9524 or at (517)645-7641, dstanley@pottervillemi.org, www.pottervillemi.org, 319 N. Nelson St, Potterville, Mi 48876. The City of Potterville is an equal opportunity employer. The 2022 Water Quality Report is made available online at https://pottervillemi.org/department-of-public-works/ Contaminants and their presence in water: Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (800-426-4791). Vulnerability of sub-populations: Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune systems disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Center for Disease Control guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791). Sources of drinking water: The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. Our water comes from wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. ## Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. - Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture and residential uses. - Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems. In order to ensure that tap water is safe to drink, the U.S. EPA prescribes regulations that limit the levels of certain contaminants in water provided by public water systems. Federal Food and Drug Administration regulations establish limits for contaminants in bottled water which provide the same protection for public health. ### Water Quality Data The table below lists all the drinking water contaminants that we detected during the 2022 calendar year. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done January 1 through December 31, 2022. The State allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. All the data is representative of the water quality, but some are more than one year old. #### Terms and abbreviations used below: - <u>Maximum Contaminant Level Goal (MCLG)</u>: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. - <u>Maximum Contaminant Level (MCL)</u>: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. - <u>Maximum Residual Disinfectant Level (MRDL)</u>: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. - <u>Maximum Residual Disinfectant Level Goal (MRDLG)</u>: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. - <u>Treatment Technique (TT)</u>: A required process intended to reduce the level of a contaminant in drinking water. - N/A: Not applicable - ND: not detectable at testing limit - ppm: parts per million or milligrams per liter - ppb: parts per billion or micrograms per liter - ppt: parts per trillion or nanograms per liter - <u>pCi/l</u>: picocuries per liter (a measure of radioactivity) - Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. - <u>Level 1 Assessment</u>: A study of the water supply to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. - <u>Level 2 Assessment:</u> A very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. #### 1Monitoring Data for Regulated Contaminants | Regulated Contaminant | MCL, TT,
or MRDL | MCLG or
MRDLG | Level
Detected | Range | Year
Sampled | Violation
Yes/No | Typical Source of Contaminant | |--|-------------------------------|------------------|-------------------|--------|-----------------|---------------------|---| | Arsenic (ppb) | 10 | 0 | N/A | N/A | N/A | N/A | Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes | | Barium (ppm) | 2 | 2 | N/A | N/A | N/A | N/A | Discharge of drilling wastes; Discharge of metal refineries; Erosion of natural deposits | | Nitrate (ppm) | 10 | 10 | ND | N/A | 2022 | NO | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits | | Fluoride (ppm) | 4 | 4 | .14 | N/A | 2021 | NO | Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories | | Sodium ¹ (ppm) | N/A | N/A | 33 | N/A | 2021 | NO | Erosion of natural deposits | | TTHM Total Trihalomethanes (ppb) | 80 | N/A | N/A | N/A | 2022 | YES | Byproduct of drinking water disinfection | | HAA5 Haloacetic Acids (ppb) | 60 | N/A | N/A | N/A | 2022 | YES | Byproduct of drinking water disinfection | | Chlorine ² (ppm) | 4 | 4 | .49 | .3-1.8 | 2022 | NO | Water additive used to control microbes | | Alpha emitters (pCi/L) | 15 | 0 | 3.7 | N/A | 2017 | NO | Erosion of natural deposits | | Combined radium (pCi/L) | 5 | 0 | 3.2 | N/A | 2020 | NO | Erosion of natural deposits | | Total Coliform | TT | N/A | 0 | N/A | 2022 | NO | Naturally present in the environment | | E. coli in the distribution system (positive samples) | See E. coli note ³ | 0 | 0 | N/A | 2022 | NO | Human and animal fecal waste | | Fecal Indicator – E. coli at the source (positive samples) | TT | N/A | 0 | N/A | 2022 | NO | Human and animal fecal waste | ¹ Sodium is not a regulated contaminant. ² The chlorine "Level Detected" was calculated using a running annual average. ³ E. coli MCL violation occurs if: (1) routine and repeat samples are total coliform-positive and either is E. coli-positive, or (2) the supply fails to take all required repeat samples following E. coli-positive routine sample, or (3) the supply fails to analyze total coliform-positive repeat sample for E. coli. | Regulated Contaminant | MCL, TT,
or MRDL | MCLG or
MRDLG | Level
Detected | Range | Year
Sampled | Violation
Yes/No | Typical Source of Contaminant | |--|---------------------|------------------|----------------------------|------------------------|-----------------|----------------------------------|--| | Hexafluoropropylene oxide dimer acid (HFPO-DA) (ppt) | 370 | N/A | ND | N/A | 2022 | NO | Discharge and waste from industrial facilities utilizing the Gen X chemical process | | Perfluorobutane sulfonic acid (PFBS) (ppt) | 420 | N/A | ND | N/A | 2022 | NO | Discharge and waste from industrial facilities; stain-resistant treatments | | Perfluorohexane sulfonic acid (PFHxS) (ppt) | 51 | N/A | ND | N/A | 2022 | NO | Firefighting foam; discharge and waste from industrial facilities | | Perfluorohexanoic acid (PFHxA) (ppt) | 400,000 | N/A | ND | N/A | 2022 | NO | Firefighting foam; discharge and waste from industrial facilities | | Perfluorononanoic acid (PFNA) (ppt) | 6 | N/A | ND | N/A | 2022 | NO | Discharge and waste from industrial facilities; breakdown of precursor compounds | | Perfluorooctane sulfonic acid (PFOS) (ppt) | 16 | N/A | ND | N/A | 2022 | NO | Firefighting foam; discharge from electroplating facilities; discharge and waste from industrial facilities | | Perfluorooctanoic acid (PFOA) (ppt) | 8 | N/A | ND | N/A | 2022 | NO | Discharge and waste from industrial facilities; stain-resistant treatments | | Inorganic Contaminant Subject to Action Levels (AL) | Action
Level | MCLG | Your
Water ⁴ | Range
of
Results | Year
Sampled | Number of
Samples
Above AL | Typical Source of Contaminant | | Lead (ppb) | 15 | 0 | 2 | N/A | 2021 | NO | Lead service lines, corrosion of household plumbing including fittings and fixtures; Erosion of natural deposits | | Copper (ppm) | 1.3 | 1.3 | .54 | N/A | 2021 | NO | Corrosion of household plumbing systems;
Erosion of natural deposits | ⁴ Ninety (90) percent of the samples collected were at or below the level reported for our water. Information about lead: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [NAME OF UTILITY] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you have a lead service line it is recommended that you run your water for at least 5 minutes to flush water from both your home plumbing and the lead service line. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. Infants and children who drink water containing lead could experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink this water over many years could develop kidney problems or high blood pressure. Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor. # IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER Monitoring Requirements Not Met for the City of Potterville The city of Potterville is required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During the monitoring period of July 1, 2022, to July 31, 2022, we did not complete monitoring for total trihalomethanes (TTHM) and haloacetic acids five (HAA5) and therefore, cannot be sure of the quality of your drinking water during that time. The violation **does not** pose a threat to the quality of the supply's water. What should I do? There is nothing you need to do at this time. This is not an emergency. You do not need to boil water or use an alternative source of water at this time. Even though this is not an emergency, as our customers, you have a right to know what happened and what we are doing to correct the situation. The table below lists the contaminants we did not properly test for, how often we are supposed to sample for these contaminants, how many samples we are supposed to take, how many samples we took, when samples should have been taken, and the date follow-up samples will be collected. | Contaminants | Required
sampling
frequency | Number of samples taken | Date sample should have been collected | Date sample will be collected by | |--------------------|-----------------------------------|-------------------------|--|----------------------------------| | TTHM¹ and
HAA5² | 1 Every Year | 0 | July 1, 2022 – July 31,
2022 | July 1, 2023 – July 31,
2023 | What happened? What is being done? We collected a TTHM and HAA5 sample on July 22, 2022, but the sample failed pH and was not accepted for compliance. We will collect the required follow-up sample between July 1, 2023, and July 31, 2023. Our staff is making every effort to assure this does not happen again. For more information, please contact Donald Stanley at 517-667-9524. Please share this information with all the other people who drink this water, especially those who should have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail. More information about your drinking water is available from the U.S. Environmental Protection Agency Office of Water home page at: http://www.epa.gov/safewater/dwinfo.htm. This notice is being sent to you by the City of Potterville. - ¹ TTHMs are tested by collecting one sample and testing that sample for all the TTHMs. TTHMs include bromodichloromethane, bromoform, chlorodibromomethane, and chloroform. - ² HAA5s are tested by collecting one sample and testing that sample for all the HAA5s. HAA5s include monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic acid, and dibromoacetic acid. | CERTIFICATION: | | WSSN:05550 | |----------------|--|------------| |----------------|--|------------| I certify that this water supply has fully complied with the public notification regulations in the Michigan Safe Drinking Water Act, 1976 PA 399, as amended, and the administrative rules. Signature: Director Date Distributed: 6-7-2023